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Abstract

Identifying the differing ways in which political actors and groups express themselves is a key task in the

study of legislatures, campaigning and communication. A variety of computational tools exist to help

find and describe these patterns, typically summarizing differences with weighted word lists representing

either lexical frequencies or semantic fields. I identify two limits to the inferences that can be made

based on this method: the ambiguity of the semantic value of words without wider context and an

inability to detect differences outside of lexical semantics. I present a combination of text annotation

and deep-learning feature attribution, a set of techniques for evaluating the relative importance of data

inputs to the prediction of a neural network classifier, as an alternative means of identifying differentiating

language usage in political texts. Results are evaluated with comparison to existing text-as-data tools on

a dataset of US presidential campaign advertisements from Facebook between 2017 and 2020.
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Introduction

How can we summarize differences in rhetoric between Donald Trump and Joe Biden? Observers familiar

with both politicians might contrast the policy issues they choose to talk about, such as Trump favoring

illegal immigration and Biden favoring infrastructure development. One can also point to differences in the

sentiment they try to evoke, with Biden’s rhetoric emphasizing unity, especially among Democrats, versus

Trump emphasizing the existence of a movement and its enemies; or, specific phrases or slogans associated

with the respective candidates “Build Back Better” versus “Make America Great Again”. One can simply

point to the fact that their voices sound very different. These descriptive differences in rhetoric matter for

characterizing and understanding political actors, their context, and are core to a common notion of what

constitutes politics.

Political scientists have applied theories and frameworks from linguistics to help systematize these observations.

The examples mentioned in the previous paragraph can described as differences in semantics (the meaning of

words and things referred to), lexis (word choice), and prosody (how things sound). In recent years, automated

tools from computational linguistics have been applied with great success to political science questions seeking

to characterize differences in language usage between political actors in large corpora, such as the study of

legislator attention (i.e. what do congresspeople speak about? Grimmer 2013), policy framing in news media

(Barnes and Hicks 2018), or identifying the words that characterize Democrats and Republican lawmakers

(Monroe, Colaresi, and Quinn 2008).

I argue that while existing computational tools used by political scientists are effective for identifying some

kinds of linguistic differences, they are limited in their ability to identify and describe others. I attribute

this to two design decisions. First, current methods typically use words as a unit of analysis, discarding

linking information relating to order, context and syntax. Second, current methods primarily output reductive

numerical summaries, which are then used to weight word lists or documents. This approach links theory

and empirics by inferring the semantic values and contexts associated with individual words, and then

making claims about the prevalence of these phenomena based on numerical weights. This results in two

widespread issues: difficulty validating the inferred semantic value of a word because of a disconnect between

the source texts and the summaries, and difficulty identifying or describing patterns that occur outside of
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lexical semantics.

To address this gap, I offer a novel computationally-assisted approach for identifying and describing differences

in language usage between political actors. In this approach, texts are annotated with salience scores

representing whether a region contains language that differentiates the speaker. These salience scores are

generated using Integrated Gradients (Sundararajan, Taly, and Yan 2017), a technique for measuring the

importance of individual data inputs to the prediction of neural network model, extracted from a deep learning

(DL) classifier based on the BERT architecture (Devlin et al. 2019). Instead of using these scores as a scoring

method to rank the extent to which words are differentiating, I annotate the source texts with these scores in

order to visualize the logic of the DL classifier in context and detect a broader range of linguistic phenomena.

I demonstrate the reliability and utility of this method with three sets campaign comparisons. First I compare

the highly contrastive Trump and Biden campaigns to show that the method produces sensible and plausible

results. Next, I compare the more similar Sanders and Warren campaigns to show that the method is capable

of detecting subtler and unexpected differences. Finally, I compare eleven Democratic primary candidate

campaigns, including Biden, Sanders and Warren, to show both the substantive importance of reference

category when identifying characterizing features, and that the method can be generalized to the multiclass

case.

Using the feature attribution scores as a way to identify differentiating words, I discover diverging lexical

patterns such as Sanders using the words “campaign” and “donate” versus Warren using the phrases “grassroots

movement” and “chip in”. While having a relatively low rank correlation compared to established word ranking

methods, there is a sufficiently similar semantic interpretation of high-ranking tokens to believe that a feature

attribution strategy does find substantively plausible patterns. Furthermore, using feature attribution scores

to create annotative heat maps over source texts, I identify thematic patterns in individual advertisements.

This article makes two broader theoretical contributions to social science methodology. First, I demonstrate

that instead of using reductive summaries, annotating documents with patterns of attribution permits valid

inference and bridges qualitative and quantitative approaches to text, combining the reliability of human

validation with the scalability of algorithmic analysis. Second, this paper presents a novel application of DL

within a social science research framework. Despite its increasing importance in natural language processing
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(NLP), machine learning (ML) and artificial intelligence (AI), DL has seen limited application in social science

research because of the low explainability of DL models. Using model interpretation and validation approaches

developed specifically for DL settings, I show how we can incorporate complex models into a measurement

and estimation strategy.

The rest of the article is organized in four parts. In the first section, I motivate the application of computational

tools to analysing political language, and highlight the limitations of existing approaches. In the second

section, I make arguments for phrase-level and annotative approaches and present feature attribution on

sequence classifiers as strategy that can be validated. I then present the results of this novel approach applied

to political campaign advertisements, first contrasting its application to existing lexical scoring approaches,

then next demonstrating a novel annotative approach. In the final section, I discuss the possibilities and

limitations of my proposed approach.

Motivation

Prior to presenting the approach, I elaborate the need for a novel method by considering the aims of automated

text analysis in political science and the limits of existing tools. I argue that the utility of automated tools for

text extends beyond problems of scale, and that these tools should be thought of as more than a means of

amplifying human intuition. I then consider advantages of the reductive numerical approach to text used in

political science text-as-data, but also establish the kinds of claims that we are unable to make within this

paradigm.

Why Text, and why Automate?

In their 2013 survey of the burgeoning political science text-as-data field, Grimmer and Stewart (2013) note

the increased availability of large political corpora in electronic form as a driving factor behind the increased

popularity of automated content analysis methods. This “big data” trend is the case for political campaigns

as well. An indirect consequence of the major growth in internet-based political campaigning (Fowler et al.

2021) has been the creation of datasets several orders of magnitude larger than those previously available;
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four such examples are detailed in the table below.1

Dataset N Docs
Google Transparency (Politics, US) 619K
Facebook Ad Library (Politics, US) 13.3M
Princeton Corpus of Emails2 435K
ProPublica 225K

The logistical challenges presented by these large corpora makes clear that one motivation for the development

and application of automated content analysis methods is scalability. Automated tools make it possible for

researchers with limited funding support to analyze large quantities of unstructured data. However, justifying

automated content analysis methods in terms of feasibility and efficiency presents them as a second-rate

option for researchers unable to hire and train large numbers of human coders or research assistants, which

misses several important parts of the picture.

For one, political scientists study texts because many political phenomena are textual. In some cases, this is

in the form of incidental trace data, such as the transcripts of political activities (e.g. Diermeier et al. 2012;

Gentzkow, Shapiro, and Taddy 2019). Other political phenomena are inherently of text form, such as laws

(Lapinski 2008) and court decisions (Clark and Lauderdale 2012), or the communications that construct a

political environment such as legislator press releases (Grimmer 2013) and news articles (Barnes and Hicks

2018). Studying these phenomena requires a range of tools specifically designed to deal with the complex way

information is encoded into natural language.

While structured qualitative approaches to text can use human natural language understanding to trivialize

the complexity issue at the phrase and document level, their challenge is aggregation and the identification or

description of corpus-level patterns. One common approach, referred to as (Qualitative) Content Analysis

(QCA), systematizes the human estimation of counts and proportions of concepts of interest within a corpus.

This strategy can be applied at various levels. Examples of document level coding include Barabas and Jerit
1Note that such large numbers can be misleading in both directions; on the one hand they are underestimates of the total

number of all political advertisements shown on these platforms (Edelson, Lauinger, and McCoy 2020) but on the other hand,
most research questions are typically interested in a considerably smaller subset of advertisements, such as those run by candidate
campaigns or PACs.

2See Mathur et al. (2020).
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(2009) and Hayes and Lawless (2015), who respectively code news articles by event or tone. Classification

can also be done at the quasi-sentence level (e.g. John and Jennings 2010), or flexibly between levels as an

information retrieval task for finding all texts and extracts relevant to a particular issue (Stanig 2015).

What do we Estimate?

Grimmer and Stewart (2013) name quantitative analogs for tasks done with QCA, and where the estimand

is unified between qualitative and quantitative approaches text-as-data methods can be thought of as tools

for “amplifying and augmenting careful reading” (Grimmer and Stewart 2013, 268). But as with non-text

quantitative methods used in political science, quantitative text analysis tools popular in political science

applications primarily produce numerical/statistical summaries. Three categories of approach have been

particularly popular in political science applications: scaling models, topic models and embeddings. Scaling

models such as Word Scores (Laver, Benoit, and Garry 2003; Lowe 2008), Wordfish (Slapin and Proksch 2008)

or Wordshoal (Lauderdale and Herzog 2016) score documents onto a single dimension, which is then used to

compare their positions. Topic models (Blei, Ng, and Jordan 2003) decompose a corpus into k distributions

over words and documents, which are generally interpreted to correspond with separate semantic fields. These

topics are then used to describe documents as a mixture of these fields, or to compare different documents

within the same topic. Popular variants include seeded topic models (Eshima, Imai, and Sasaki 2020), which

can be used for semi-supervised lexicon discovery and parameterised topic models (Roberts et al. 2014), which

are used to model topic mixture as a function of speaker covariates. Finally, embedding models represent

tokens in a corpus as the dense representation of the conditional likelihood of a token given its context and

other metadata in the training corpus. These vector representations are used to model words, documents

and document covariates; Rodman (2019) describes the semantic shifts of key terms in newspaper corpora,

whereas Rheault and Cochrane (2020) include speaker metadata to produce “party embeddings”.

These approaches are all reductive in the sense that they produce a lower-dimensional summary of the source

texts. They are also appropriate to their respective applications. If our estimand is ideology and we treat

parliamentary speech (e.g. Peterson and Spirling 2018) or manifesto text (e.g. Slapin and Proksch 2008) as a

noisy signal of ideology, then the appropriate estimator is one that decomposes or otherwise filters the input.
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Likewise, if our goal is to describe the semantic shift of key terms (Garg et al. 2018; Rodman 2019) then our

estimator is distances in a word embedding space, and if our goal is to discover and label the semantic fields

contained in a corpus (Blei, Ng, and Jordan 2003; Grimmer 2013; Roberts et al. 2014), then our estimator

will be a topic model. In the case of this article, where the objective is to select the linguistic features that

differentiate and characterize political actors, past approaches have been based on lexical scoring methods,

such as Monroe, Colaresi, and Quinn (2008) who compare four different approaches for identifying words that

differentiate Democrats from Republicans in a congressional speech corpus.

The theoretical estimand in all of the above papers is semantic in nature, such as the ideology of a text (Laver,

Benoit, and Garry 2003; Lowe 2008; Slapin and Proksch 2008; Lauderdale and Herzog 2016) or the words

most closely related in meaning to a target word or list of words (Rodman 2019; Eshima, Imai, and Sasaki

2020). The link between theoretical and empirical estimands in these studies is made by leveraging the fact

that words tend to be associated with meanings. Thus researchers combine the semantic values of words with

numerical values provided by models to produce weighted or ranked word lists, and then infer the relative

prevalence of semantic quantities in the data.

Many of the challenges and limitations of these methods–e.g. polysemy, ambiguity–result directly from an

approach that begins with discarding word order and ends with describing the meaning of language in terms

of the relative rates of usage of different words or phrases. These challenges are exacerbated by the fact that

summary and reduction necessarily entail informational loss. Particularly when the representation of the

results is in a different medium to the original data (i.e text to numeric), tasks such as sense disambiguation

become difficult because of the disconnect between the summarized quantity and the original text.

It is not my intention to claim that inference leveraging numerical summaries for aggregation and lexical

semantics for linking theory and empirics is useless or invalid; on the contrary, the careful application of these

methods has produced many valid works in the study of important textual political data and phenomena.

Rather, my point is that it is not always necessary to disconnect the source texts and numerical summaries, and

opting not to do so has various benefits. Some questions require the contrasting of corpus-level patterns with

document-level phenomena. In this article, the goal is to identify the characteristics of an advertisement that

differentiate it as belonging to its campaign. This compares corpus- and document-level features. Identifying
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the linguistic features that typify a political advertising campaign requires knowledge of the entire corpus,

and identifying which features of a document make it (a)typical of that campaign requires application of

those corpus-level patterns to every aspect of the document. In these cases, I argue that there is a need for

annotative methods that link high-level summaries to individual observations. I elaborate on such a tool

subsequently.

Differentiating Language

In this section I present a new approach to differentiating the language use of political actors, based on the

feature attribution scores of a DL sequence classification architecture. The presentation is divided into two

portions; in the first, I discuss existing approaches to the task based on lexical scoring methods, and identify

gaps in our methodological toolkit. In the second, I discuss the challenges of applying DL in a social science

context, and provide several justifications for its application in this case.

Differentiating language usage between political campaigns is a broad task. One approach considers it as

feature selection task, where the labels are the campaign, the data are the content of the advertisements, and

the goal is to select the features of the data that are indicative of a label. We can add the restriction that

these features should be substantively interpretable, given that we eventually want to use them to characterize

the respective campaigns.

Monroe, Colaresi, and Quinn (2008) approach this task by considering lexical, i.e. word-usage, differences

between the campaigns. Their method treats words as the unit of analysis in language, and the semantic

values associated with words facilitates the interpretation of resulting outputs. Monroe, Colaresi, and Quinn

(2008) use additional contextual information about their corpus, such as the fact that the primary topic of

debate in the particular session of Congress was regarding abortion, to validate their measure and make

additional claims about speaker pragmatics, such as strategy, inferable from observed word frequencies. In

this example, they find that Republicans are associated with the pseudowords kill, babi, procedur and

Democrats are associated with woman, decis, and famili. We are able to infer the framing strategies (Chong

and Druckman 2007) employed by politicians on respective sides of the aisle based on these single words both

because we infer a wider context in they occur.
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However as noted, there are limits to what we can infer about the style or strategy of a campaign based on

the meanings of individual words sans context. Although in the above examples, the broader intent of a

statement containing the respective words can be inferred because it is less likely that the word “kill” will

occur in a pro-choice statement in the context of a debate on abortion, using the word “kill” in a sentence

does not inherently make it a pro-abortion stance. The semantic context of a word in an isolation can be

highly ambiguous even where the word is not polysemous. For example, it is hard to guess whether the token

mother should be associated with Republican or Democrat speech in an abortion context (as it turns out,

mother is highly Republican).

The challenge faced by text-as-data strategies linking their theoretical and empirical estimand based on

individual words and their inferred semantic context is that in most cases, individual words do not produce the

phenomenon of interest, but only correlate with it. When what is being measured (the empirical estimand) is

only linked to what is being studied (the theoretical estimand) by empirical regularity and not causality, it

becomes important for the researchers to consider the conditions under which this regularity may not hold.3

An approach to directly circumvent this challenge is to recover the entire span (phrase in a broad sense)

that contains the entire phenomenon of interest. This approach is challenging using current political science

text-as-data methods for two reasons. The first reason relates to pre-processing: most text-as-data methods

discard word order, representing documents as counts of tokens. Trying to recover span boundaries using such

models is difficult, because the model does not treat language as an ordered sequence. The second reason

relates to how we use the outputs of text-as-data models. Even if we are able to perfectly extract relevant

spans from each text, these outputs cannot be aggregated straightforwardly like a numerical summary. In

order to interpret the output of a span-extracting model, we can either use a secondary model to aggregate

features of interest from these spans, but this fails to circumvent the original reason for taking a different

approach.

One could simply list out the extracted spans and read them individually. Instead, I advocate an annotative

approach, where the researcher highlights the relevant spans within each document. The time cost of this
3It is not my intention to say that researchers must therefore always prefer deductive strategies! On the contrary, the inferential

leverage of an inductive approach provides many opportunities for progress in empirical social science research, and regardless a
deductive approach to a process as complex as language will come with its own challenges.
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approach is mitigated by the reduced time spent on validation, and can be further mitigated by randomly

sampling a subset of texts to determine broader trends.

I apply and compare all of the above approaches in the Results section to show furthermore that they can be

viewed as complementary and mutually validating. To the extent that each model treats the data differently

but arrives at similar results, the researcher can be certain that the patterns they are observing are inherent

to the data and not an artifact of the method they have chosen.

Deep Learning and Interpretation

Because of the limitations in modelling spans introduced by the standard pre-processing steps detailed above,

I turn to a computational language model that models words within sequences. Among these, I use several

variants of the DL BERT architecture (Devlin et al. 2019)4, which has become dominant in NLP for achieving

state-of-the-art performance in a broad variety of tasks with minimal task-specific engineering.

It is worth noting that despite the increasingly widespread application of ML tools in quantitative social

science methodology, there has been limited transfer of complex neural network-based DL tools, themselves

an important part of ML, to our field.5 Whereas NLP has taken a strong turn towards DL in recent years,

political science text-as-data applications remain primarily focused on non-DL methods. There are reasons

for the lack of DL applications in political science which need to be addressed in order to justify its use in

this paper.

In brief,6 DL refers to a broad class of neural network models that pass data through multiple layers of nodes.

Each node (sometimes called an artificial neuron) takes in a set of inputs, calculates their weighted sum, and

then passes this value onto the next layer of the network. Often, before passing on the data, an “activation

function” is applied to constrain the value of the output. The model is trained by passing the data through

the entire network, calculating the loss compared to the true outcome, and then adjusting the weights on the
4Variants of BERT : for the sake of brevity, in this paper I refer to all transformer-based encoders for language modelling

tasks as BERT, after the most famous architecture in Devlin et al. (2019). However, the models employed in this paper are all
variants of the original model, not limited to DistilBERT, RoBERTa, MiniLM, and the Reimers and Gurevych (2019) modifications
of all these. For an extensive explanation of how BERT works, see Rush (2018).

5Recent exceptions include Lall and Robinson (2021) and Torres and Cantú (2022). Additionally Rodriguez, Spirling, and
Stewart (2020) include BERT as a benchmark to compare their method against.

6For recent and accessible introductions to neural networks and deep learning, I point the reader to Aggarwal et al. (2018) or
Skansi (2018).

10



inputs at each node to minimize this error, iteratively. The loss function itself can be defined by the user.

While each individual node is therefore relatively simple (analogous to a linear regression model), the ability

to combine many of these units into complex configurations (called architectures) creates models that are

both highly flexible and predictive.

However, in many of the typical applications for quantitative models in social science research, the ability to

describe the relationship between the inputs and outputs is more important than the ability to accurately

predict the output (Hofman, Sharma, and Watts 2017). Despite containing weights analogous to regression

coefficients, it is difficult to make inferences about the relationship between the inputs and outputs on the

basis of a DL network. In part this is because it is unclear what the weights on intermediary layers in the

network describe, and in part because DL architectures typically have an enormous number of parameters7

that make systematic evaluation impractical.

These challenges are not limited to the political science domain, and the need for explainability in various

applications has motivated a “interpretable ML/DL” subfield (Linardatos, Papastefanopoulos, and Kotsiantis

2021 provide a recent review) focusing on the development of tools to interpret complex DL models. Of

particular interest in this paper is a method for extracting the logic of DL text classifiers referred to as

rationale extraction (Lei, Barzilay, and Jaakkola 2016).

This method uses the fact that when classifying a document, humans and algorithms typically base the label

on a subset of the words in the text. This subset of the text that contains sufficient information to assign a

label is referred to as a rationale. Various authors have developed axioms that rationales should fulfil (Jain et

al. 2020). The first, called faithfulness (Lipton 2018), concerns the quality of the rationale extraction strategy.

For a given classifier and rationale, a rationale is faithful if the extracted span “reflects the information actually

used by said model”. A further two criteria concern the quality of the rationale itself: it should be concise

(brevity, Lei, Barzilay, and Jaakkola 2016) and contain all relevant information (comprehensiveness, Yu et al.

2019). A fourth condition concerns the relation between machine-generated rationales and human intuition;

Wiegreffe and Pinter (2019) argues that rationales should make sense to human readers (plausibility). A

further study establishes a benchmark for comparing machine and human-generated rationales (ERASER,
7Depending on the configuration, BERT has between 110 and 345 million parameters.
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DeYoung et al. 2020).

Although rationale extraction is designed as a tool for the interpretation and evaluation of complex DL

language models, I argue that it can be used to characterize the differences in language usage between political

campaigns. Given a classifier for political advertisements that predicts the campaign as the label, we want to

know the linguistic features in the advertisement that the model used to (correctly) label the advertisement.

Provided that the extraction strategy is faithful, concise and comprehensive, rationales are the minimal span

of text within a document that contains all of the information used by the model to make that prediction.

When that prediction is correct, that span contains valid information for labelling the text. To the extent

that the rationale is plausible, we can describe the relevant linguistic features that it captures.

A critical reader can point out that we do not know the kinds of difference that the model might identify, and

these differences might leverage substantively meaningless regularities. For instance, when training a image

classifier to label the pictures associated with the advertisements of this dataset, the model quickly learned to

label images with a black bottom border as belonging to Warren’s campaign because the majority of Warren

images had this artifact whereas others did not. While this particular scenario can be prevented by careful

pre-processing and cleaning of the data, the point remains that the discovered differences may be trivial from

a human perspective.

There are several encouraging reasons to suspect a priori that this will not be the case. These relate to

the BERT architecture and how it is used. Typically, researchers will download a BERT model that has been

trained on large corpora and stored this information in the weights of the model. The pre-trained model is

then “fine-tuned” on a smaller task-specific corpus. In most cases, a BERT model that has been pre-trained

then fine-tuned will outperform a BERT model that has only seen the task-specific corpus. This technique of

using non-task-specific information to improve performance on other tasks is referred to as transfer learning,

and has been crucial in enabling the application of neural network architectures requiring enormous training

data to data-scarce applications (Rogers, Kovaleva, and Rumshisky 2020). This strategy appears to work by

encoding linguistic regularities in the weights of the model. Although researchers have found that BERT does

not interpret language identically to humans, they have found that it has a hierarchical notion of syntax (Lin,

Tan, and Frank 2019) and is able to infer semantic relations (Ettinger 2020). As such we have evidence that
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BERT is able to identify the kinds of relations that we are interested in, although we are unsure whether this

will hold across all applications.

Nevertheless, even if BERT does not differentiate campaigns using the same linguistic patterns as a human

coder would, there are reasons to be interested in the patterns that it does use. For one, classifiers using

BERT-like models have achieved superhuman accuracy on a variety of natural language benchmarks (Linardatos,

Papastefanopoulos, and Kotsiantis 2021; Storks and Chai 2021). This means that researchers have found

that for tasks where there is an objective truth (such as the task in this paper), BERT is able to classify

correctly at a higher rate than human coders. Moreover, provided that the rationale extraction strategy is

faithful, then the rationale text is in fact something that differentiates the classes. This ability to identify

non-obvious differences is likely to be especially useful in cases where the differences are likely to be subtle,

such as the comparison between Sanders and Warren. On this basis, I present BERT rationales as a strategy

for characterizing the differences between political campaigns.

Methods and Data

In this section I explain the technicalities of the methods employed, the validation strategy, and the task and

data that these methods are applied to.

Rationale Extraction and Integrated Gradients

Rationale extraction consists of two components: a feature attribution strategy that scores the input features

in terms of their “contribution” to a prediction, and an aggregation strategy for generating rationales from

the scored input features. In this paper, I use a feature attribution method known as Integrated Gradients

(IG, Sundararajan, Taly, and Yan 2017), shown to provide faithful and consistent explanations for text

classifications (Atanasova et al. 2020).

IG is a feature attribution method for neural network models, “defined as the path integral of the gradients

along the straightline path from the baseline x′ to x” (Sundararajan, Taly, and Yan 2017, 3), where x is the

input of interest and x′ is a baseline chosen by the researcher. In the case of image models, this baseline is
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typically a black image (of all zero inputs), whereas for BERT models we use an input with all tokens replaced

with the special <pad> token used to denote an empty input. The final layer of a neural network classifier has

an output node corresponding to each class; the value of the IG numerically approximates the difference in

the value at the node of the target class between the baseline and the input. These raw prediction values

(referred to as logits in the DL literature), are then transformed with a softmax function to sum to one to

approximate probabilities.

Directly interpreting raw logits presents some challenges. At the final layer of the classifier, the monotonicity

of the softmax transformation means the class corresponding to the node with the highest raw logit is the

predicted class. The model is trained to minimize the cross entropy loss of the prediction, i.e. to minimise

the log of the softmaxed logit corresponding to the target class. Thus because the softmax function takes all

classes as arguments, in order to directly interpret raw logits for a given output we need to know the values of

logits corresponding to the other classes as well.

Nevertheless, the IG scores can be interpreted in the following way. For a given IG score on an input feature,

strongly positive values indicate that the input “pushes” the prediction more towards the target class, near-zero

values indicate that the token provides little information, and strongly negative values indicate that the

token reduce the likelihood of the target class. Within the same document, the magnitude of the raw logits8

indicates relative importance of each token to the model’s classification of the document. In the binary

classification case, these values are symmetric between target classes, so negative values can be interpreted as

being indicative of the negative class. In the multiclass case, positive scores have the same interpretation, but

negative scores should be interpreted as being indicative of “not-” the target class.

In their typical usage, neural networks and their training can be probabilistic, but the predictions of these

models and their attribution scores are deterministic. This is problematic in view of evidence of the instability

of attribution methods (Atanasova et al. 2020). Given that an attribution score of zero has a clear substantive

interpretation–the input does not contribute to the prediction–a measure of uncertainty is useful. This is

particularly the case in a quantitative social science context where the ability to conduct statistical hypothesis
8Specifically, the magnitude of the attribution scores add up to the difference in predicted pre-regularization class likelihood

between the given inputs and the reference inputs, which in this case is an equal-length vector containing the special <pad> token
instead of token values.

14



tests is key.

A clever solution in the DL literature relies on the fact that many DL models include dropout layers. A

dropout layer is an operation on a tensor that returns the input with some random subset of elements set to

zero, with the probability of zeroing typically9 uniform over the inputs with the probability set parametrically.

Dropout layers are a proven tool for reducing overfitting (Srivastava et al. 2014), but Gal and Ghahramani

(2016) shows that they can be used as a computationally efficient bootstrap for neural networks. This method

is referred to as Monte Carlo Dropout (MC Dropout). I use MC Dropout to draw 30 estimates of the predicted

class and attribution score. I use these 30 draws to generate bootstrapped confidence intervals for hypothesis

testing, where I test whether the attribution score of a given feature is significantly different from zero.

Validation Strategies

I provide two means of validating the IG scores. In the first instance, I evaluate IG as a lexical scoring method

by comparing the attribution scores to the lexical scoring methods presented in Monroe, Colaresi, and Quinn

(2008). I briefly explain the two methods used for lexical scoring in this paper. The first, log-odds (LO),

provides a symmetric measure of the likelihood of a token given the class of the speaker, centered at zero when

the likelihood of use is equal between classes. Although I prevent tokens having an infinite/undefined log-odds

ratio by adding 1e − 2 to the odds, in presenting my results I only include the union of the vocabularies;

i.e. tokens occurring in both classes (one or rest for the multiclass case). This is because including tokens only

occurring in one class gives unstable results.

The second method, which I refer to as Fightin’ Words (FW), is a Bayesian model for identifying distinguishing

word usage presented in Monroe, Colaresi, and Quinn (2008). It builds on a simple comparison of usage

rates (via LO, above) to include tokens that only occur in one set of documents by introducing a smoothing

Dirichlet prior over all tokens. The z-scores indicate the number of standard deviations a word usage is away

from the mean of no difference in usage between groups.

To use IG scores for lexical scoring, I normalize the IG scores within documents so that they add up to one,

and calculate the average normalized score for each token lemma. Although this loses the interpretation
9Typically, but not necessarily, e.g. Li, Gong, and Yang (2016) propose multinomial dropout.
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associated with the zero threshold, we can infer that tokens with high average normalized IG for a given

candidate/campaign are tokens that are strongly indicative of that campaign in all instances where the token

occurs.

These IG scores are compared with the Monroe, Colaresi, and Quinn (2008) scores both quantitatively for

inter-correlation and qualitatively for prima facie informativeness. Although strong correlation and overlap

would be indicative that IG is as valid as the established approaches in Monroe, Colaresi, and Quinn (2008),

diverging results are more difficult to interpret. In one sense, we want a method that provides additional

insights that existing methods cannot find; in another sense, diverging results require additional validation to

demonstrate that the new results are also informative.

Thus we need a validation does not require comparison to existing methods. For this, I use the FRESH

strategy described in Jain et al. (2020). Given the IG scores and their associated rationales, I first train a new

classifier on a corpus consisting only of rationales. If the accuracy of the classifier does not drop significantly

compared to the model trained on the original dataset, then we can infer that the rationales do contain an

informative signal of the class (i.e. the attribution method has high precision). Furthermore, I train a third

classifier on a dataset of the texts minus the rationales. If the accuracy of this classifier drops, then we can

infer that the rationales themselves do not omit relevant information for inferring class (high recall).

I compare three strategies for extracting rationales from documents based on IG scores. The first two, used in

Jain et al. (2020), are selecting the top-k tokens by attribution score and the contiguous length-k region

with the highest summed attribution, where k is one-tenth the length of the document. The third strategy is

to use the contiguous positive region with highest average attribution score. This has the advantage of being

non-parametric, order-and-context-preserving and excluding any negative regions, but has the disadvantage of

potentially returning no tokens whatsoever (if all attribution scores are zero or negative).

To validate the rationales, I use the FRESH strategy described in Jain et al. (2020). Given the IG scores

and their associated rationales, I first train a new classifier on a corpus consisting only of rationales. If the

accuracy of the classifier does not drop significantly compared to the model trained on the original dataset,

then we can infer that the rationales do contain an informative signal of the class (i.e. the attribution method

has high precision). Furthermore, I train a third classifier on a dataset of the texts minus the rationales. If
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the accuracy of this classifier drops, then we can infer that the rationales themselves do not omit relevant

information for inferring class (high recall).

Finally, I use the IG scores to find and evaluate the features of an advertisement that differentiate it from other

campaigns, and characteristic of its own campaign. To do this, I adopt a method used in computer vision and

NLP of superimposing heat maps onto the input data to highlight high-salience regions. These annotations

can intuitively indicate to a researcher the portions of a text that are characteristic or differentiating.

Data and Task

I use ProPublica’s publicly available collection of political Facebook advertisements from 2016-2020. These

advertisements were collected using a browser plugin installed by volunteers. Whenever a participating

individual was served an advertisement on Facebook, the advertisement was scraped and sent to servers

hosted by ProPublica, who then used a mixture of human and automated classification to determine the

advertisement to be political or not. The raw content plus some pre-parsed information of the advertisements

classified as political is published on their website as a continuously updating dataset.

I am using the subset of these advertisements for which I am able to obtain a single, sufficiently large image

that accompanies the text. From these, I exclude any advertisements from advertisers that have fewer than

100 observations in the dataset. I manually merged sufficiently similar advertisers from the list of advertisers

with at least 30 advertisements in this dataset (e.g. Planned Parenthood with Planned Parenthood Action).

My final dataset for analysis contains 85,664 advertisements from 228 unique advertisers. For each advertise-

ment, I retain a unique advertisement id provided by ProPublica, the advertiser, the text of the advertisement

as parsed from the raw html using the BeautifulSoup library, the year that the advertisement was added

to the ProPublica dataset, and several manually-assigned labels based on the advertiser. These labels are

the broad type of advertiser (candidate, PAC, organisation, business), a subtype (e.g. category of race if

candidate, main issue if organisation), and alignment as either left, right, Democrat or Republican (again,

depending on which is more appropriate).

Note that the distribution of unique advertisements in this dataset is heavily skewed towards lib-
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eral/Democrat audiences. I assume that this is because recruitment of volunteers was more successful

among liberal/Democratic individuals than conservatives/Republicans. Given that I have a large number of

advertisements for Democratic candidates at all levels, from gubernatorial and state legislature to presidential

level, and I have close to no advertisements for republican candidates other than Donald Trump, I do not try

to make inferences about campaigns other than the largest one, the Trump campaign. Although there are a

number of advertisements likely tailored for conservatives in the dataset, the imbalance in coverage indicates

to me that there is a large amount of missing data for smaller races.

Three comparisons are made within the corpus. The first comparison is Donald Trump and Joe Biden (527

advertisements). This comparison is made both because they were the eventual presidential nominees of their

respective parties, but is presented first because we have the strongest preconceptions about what differences

we should find between Trump and Biden, especially given the idiosyncratic style of Trump. Thus differences

we find between the campaigns are less likely to be surprising, and more likely to be confirmatory.

The second comparison is Bernie Sanders and Elizabeth Warren (829 advertisements). This comparison is

made because they represent the two most left-wing primary candidates in the Democratic primary, and

therefore we have fewer expectations about the differences we expect to find in their campaign advertisements.

The differences identified in this comparison therefore shows the utility of the applied methods to identify

subtler differences when the expected similarity is high.

The final comparison is between Amy Klobuchar, Bernie Sanders, Beto O’Rourke, Cory Booker, Elizabeth

Warren, Joe Biden, Kamala Harris, Kirsten Gillibrand, Micheal Bloomberg, Pete Buttigieg and Tom Steyer

(3165 ads). This comparison shows the utility of these methods beyond the binary case, which is particularly

relevant for the applicability of these methods in a multiparty setting. It also reveals information about the

segments of the Democrat primary electorate that the respective primary candidates view as their target

constituency. In order to adapt LO and FW to the multiclass case I employ a one-vs-rest strategy.

Pre- and Post-Processing

Pre-processing steps in automated text analysis broadly encompass the initial operationalisation of the text in

a numerical (and usually tabular) format prior to its use in a model. Denny and Spirling (2018) show that
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steps taken at this stage typically have non-trivial impacts on the final output of the model. In order to

simplify comparisons, I unify pre-processing steps between the three models where possible. I discuss two key

parts of the pre-processing: text cleaning and tokenization.

Text cleaning helps to remove artefacts from the original data collection process and reduces noise, but also

risks introducing systematic bias by omitting particular features. For all three models I simply removed all

HTML tags, and otherwise kept the text intact (leaving artefacts such as consecutive blank spaces and so on).

A custom stopword list was created to remove non-words and other parsing errors.

Tokenization refers to the conversion of sequence of characters in a text to a sequence of “tokens”, the base

input for all models considered. Relevant decisions include conversion to lowercase, stemming/lemmatization,

and even decision of what constitutes a token (i.e. determining token boundaries). For all models, I did not

convert to lowercase because capitalization it conveys relevant information about tone, emphasis and style to

the reader. Instead of using a blunt stemming method, I used the lemmatization algorithm provided by the

SpaCy library. This reduces homonymy and leaves tokens more interpretable.

For the LO and FW approaches, I also used SpaCy’s language model to determine token boundaries. This

has the advantage over splitting on whitespace of handling contractions as two words, and then reduce them

to their respective lemmas. For IG, because the classification model is based on RoBERTa (Liu et al. 2019),

tokenization is done with a pre-trained byte-pair encoding (BPE) algorithm. I also experiment with MiniLM

(Wang et al. 2020), DistilRoBERTa (Liu et al. 2019; Sanh et al. 2019) and MPNet (Song et al. 2020), and

pre-train my own model and tokenizer based on the DistilRoBERTa architecture (presented in the appendix).

In order to make direct comparisons between the three methods, in post-processing I match the token scores

produced by the pre-trained BPE to match the boundaries of SpaCy tokens. For the most part, because

BPE produces subword tokens, this is a simple case of concatenating tokens where a word is split into several

word-parts, but in the rare reverse of a single BPE token corresponding to multiple SpaCy tokens (such as an

apostrophe in the middle of a word, which is represented by two tokens in RoBERTa), I transfer the score to

the first token and set the score of the latter as NaN. There were no cases of split boundaries between the two

tokenization schemes.
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With all comparisons, there is the decision of how to deal with tokens that occur in documents belonging to

one class and not the others. This is a particular issue for LO, as the log-odds ratio is undefined/infinite.

This is typically remedied by adding noise to the odds ratios (Monroe, Colaresi, and Quinn (2008) add 0.5 to

counts). This still results in very large log-odds scores for tokens that only occur in one class, meaning that

word lists of the top words from each class will simply capture this.

Monroe, Colaresi, and Quinn (2008) argue that this is a limitation, and account for this in the FW approach

by giving a Dirichlet prior for the baseline probability of tokens occurring in a document. For transformer

(and other DL) models, the baseline probability of a token is learned from the pre-training corpus, with no

word containing only characters in the tokenizer vocabulary having a uninitialized corresponding gradient

(although obviously, combinations of tokens may not have been encountered during the pre-training).

During fine-tuning, we should expect transformer models to converge towards predicting documents on the

basis of individual tokens that perfectly predict class in the training data. In order to mitigate this, I use

both a low learning rate (1e − 5 to 5e − 5) and dropout layers both in the embedding block at the beginning

of the model and in the classification block at the end of the model, to penalise localized learning.

Results

I present the results in three parts. The first part compares IG to LO and FW as a lexical scoring method. I find

that whereas LO and FW provided highly correlated rankings (both by Pearson and Spearman correlations),

IG is relatively uncorrelated with either. Nevertheless, by inspecting the words that each ranks highly, we

see that IG does not give misleading or unhelpful results. The second part presents the results of rationale

generation, finding that the IG scores are stable the rationales faithful. The final part discusses what we can

infer from scores and demonstrates how they can be used to annotate documents.

Lexical Selection

I first compare the Spearman rank correlation of the three measures. Figure 1 shows the correlation matrix

for the Biden vs Trump and Sanders vs Warren comparisons; the correlation matrix of all primary candidates
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is in the appendix. In each matrix, there are four columns/rows, corresponding to the ranking of tokens by

Log-Odds Ratio, FW Z-Score, and the non-normalized feature attribution scores for each candidate (note

that the rankings that these will not be symmetrical, as each is calculated only within the speaker’s own

documents).

Log-O
dds

Z-Score

IntG
rad-JB

IntG
rad-D

JT

Log-Odds

Z-Score

IntGrad-JB

IntGrad-DJT

1 0.859 -0.233 0.413
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-0.233 -0.248 1 -0.469

0.413 0.35 -0.469 1

Spearman Rank Correlation
Biden vs Trump

Log-O
dds

Z-Score

IntG
rad-BS

IntG
rad-EW

Log-Odds

Z-Score

IntGrad-BS

IntGrad-EW

1 0.864 -0.177 0.354

0.864 1 -0.237 0.341

-0.177 -0.237 1 -0.237

0.354 0.341 -0.237 1

Spearman Rank Correlation
Sanders vs Warren

Figure 1: Spearman rank correlation matri-

ces for LO, FW and IG scores.

Several patterns stand out. For both pairs, the rankings provided

by LO and FW are highly correlated (approximately 0.86). For

Biden and Sanders, there is a negative correlation due to the

alignment of the LO and FW rankings treating Trump/Warren

as the “positive” pole. In general IG is weakly correlated with LO

and FW, but there is no fixed pattern to this weak correlation.

How do these rankings compare at the top end of the distribu-

tion? I present the top ten tokens by candidate for each com-

parison in figure 2 In contrast to the visualisations of Monroe,

Colaresi, and Quinn (2008), I plot the information as annotated

heat maps to convey the information more concisely. The figure

consists of subplots, each containing the top 10 ranked tokens

by candidate for each comparison, colored by score. The top

row (orange) shows the absolute log-odds ratio. The middle row

shows the absolute z-score from Monroe, Colaresi, and Quinn

(2008). The bottom row shows the average feature attribution.

The scale for all three sets of tables is shown on the right-hand-

side of the figure. For LO and IG, only tokens occurring in at

least two classes are included; a version of this figure that does

not exclude these tokens is in the appendix.

Although the extent of characterization and inference that can

be made from a small subset of words is limited, interesting

comparisons can be made in multiple directions. One is between
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Figure 2: Top 10 tokens by candidate by comparison for Log-Odds, Fightin’ Words and Integrated Gradient.
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models, seeing the different tokens that the respective models emphasise. The other is within the same model,

comparing how changing the reference category affects the top 10 tokens of a campaign.

Each model emphasises different aspects. LO is a simple, normalized and symmetric ranking of tokens

occurring very frequently in one class but not the other. We can see that Donald is the token with the highest

LO ratio for Joe Biden when comparing Biden to Trump, followed by Bernie, beat, defeat and so on. In

contrast, the top LO tokens for Trump when compared to Biden are pm, match, rally, official and love.

We might infer from this that compared to Trump’s advertisements, many of Biden’s advertisements are

about defeating his opponents, whereas Trump advertises events/deadlines (such as rallies, funding deadlines

and so on).

In contrast, FW can be interpreted as the increased likelihood of using a particular term given speaker

class, relative to a baseline probability of using any word. This hints at a similar interpretation for Trump,

highlighting usage of the tokens my, official, american, but shows a semantically less interpretable set of

tokens for Biden: can, but, more, if. A possible interpretation here is that Trump advertisements are more

likely to use declarative statements, in which case qualifying verbs and hypothetical conjunctions are less

likely to be used relative to Biden advertisements.

IG emphasizes a similar pattern overall with more resemblance to LO in interpretation. Top Biden tokens

include names (Joe, Donald, Barack, Biden) whereas Trump tokens include language advertising events or

other activities (watch, Saturday, PM, information). Across all three rankings, Trump advertisements are

associated with adjectives pertaining to a semantic field of legitimacy and grandeur (official, great, huge,

real), which appears to reflect Trump’s style.

Comparing Sanders andWarren, Sanders’ advertisements are more associated with campaigning and fundraising

language (contribution, victory, donation, donate deadline, finance, endorsement) and Warren’s

advertisements are more associated with specific issues and a grassroots movement (grassroots, movement,

justice, corruption, impeachment). This pattern holds less when the comparison includes all other

democratic primary candidates. Sanders’ advertisements are then more associated with his signature issues

and style, with tokens such as (establishment, transform, elite, tuition, damn, billionaire, Health),

while tokens relating to fundraising rank somewhat higher again for Warren (beer, tote).

23



The extent of inference that can be made from these tokens without the context in which they occur is

limited. Nevertheless, it appears that all three measures highlight prima facie sensible characterizations of

each campaign. It is also clear that from these maps that what “characterizes” a campaign very much depends

on what that comparison is being made against.

Attribution and Rationales

Although feature attribution based on IG has provided plausible lexical rankings in this instance, what can we

say about their performance more generally? In this section I discuss the stability, reliability and interpretation

of IG in context.

Using MC Dropout, for each document I sample 30 draws from the posterior feature attribution distribution.

Figure 3 compares these distributions for a Biden advertisement for the two different classifiers. The blue

circles show the per-token attribution from the classifier differentiating Trump and Biden, and the orange

diamonds show the same for the Democratic primary. Each point shows the estimated attribution score with

bootstrapped (n = 1000) 95 percent confidence intervals for each token (small horizontal lines).
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Figure 3: Per-Token Feature Attribution (bootstrapped 95% CI). Note changing x-axis scale.

Several patterns emerge. Firstly, there appears to be a mixture of “high”, “medium” and “low” attribution

regions. For the Trump versus Biden classifier, there is a single phrase with a high attribution score: “defeat

Donald Trump” in the third sentence. In contrast, the Democratic primary classifier assigns high scores to

“Donald Trump” but a negative score to “defeat”, and its highest score is on the punctuation mark “:” in the

first sentence. The Democratic primary likewise assigns significant scores to several ranges of the text that

the Trump versus Biden model does not: “you believed in me”, “you just put your faith in”, “in our nation”.

Consider the phrase “defeat Donald Trump” in the third sentence (right-hand panel, figure 3). The substantive

interpretation of the attribution scores is that while the phrase “Donald Trump” is indicative of a Biden

advertisement, the token “defeat” is only associated with Biden when compared to Trump advertisements,

and indicative of non-Biden advertisements when comparing to other Democratic candidates. Additionally,

the token “Donald” is a strong indicator of a Biden advertisement when compared to Trump, whereas this is
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not the case when compared to other Democratic candidates.

It is unsurprising that the phrase “defeat Donald Trump” indicates that it is the advertisement from Donald

Trump’s opponent. Comparing Biden to the other democratic primary candidates, we see instead the phrases

“: This is your campaign”, “put your faith”, “I’m grateful”, “our nation” and “Donald Trump and Republicans”

highlighted. The former four phrases point to a rhetorical style possibly pertaining to a semantic field of

Christian morality (collectivism, faith, humility) being employed by Biden’s campaign, and the latter may

indicate that most Biden advertisements make reference to the opponents to be defeated.

Are these high-attribution phrases actually sufficient to differentiate Biden advertisements from other cam-

paigns? I use the FRESH validation strategy of Jain et al. (2020) to test whether this is the case. Remember

that for an explanation to be faithful it must actually reflect the information used by the model to come to

its decision (Lipton 2018). This is equivalent to our application, where we are interested in the “logic” of

the classifier because we want to know what features it uses to differentiate speakers. Therefore we need

to confirm that our feature selection strategy highlights inputs that the model actually determines to be

differentiating.

Figure 4: Rationale Generation
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Figure 4 shows the text of the same Biden advertisement, shaded by mean attribution score over 30 draws for

each model. Darker shades indicate a stronger score, and red indicates the positive class (Biden) whereas

blue indicates the negative class (not-Biden). These attribution heat maps help visualize the three rationale

extraction strategies. Two are from Jain et al. (2020) (contiguous, topk), and one is an original approach

(positive). The contiguous and topk strategies extract fixed proportions of the document as a rationale;

contiguous selects the length k region with the highest sum attribution score, whereas topk chooses k tokens

with the highest scores. Because my aim is to flexibly identify variable-width spans for characterization,

positive chooses the contiguously positive segment with the highest average attribution score.10

The length of the rationale is an informational trade-off. Shorter rationales are more parsimonious, but are

more likely to exclude informative spans. For the topk and contiguous, I set rationale length to one-tenth

the length of the document, as in Jain et al. (2020). For positive, the average rationale length is 19.3

percent of the document. Figure 5 shows the distribution of rationale size, broken down by comparison

group. Rationales for the Democratic Primary were on average the smallest proportion of the text, but the

distribution also has the longest tail and smallest inter-quartile range.

Jain et al. (2020) state that to fulfil the faithfulness criterion, models trained on the rationales should also be

able to accurately predict labels. Intuitively, this shows that extracted rationales contain enough signal that a

model that only sees the extracted text would be able to infer the correct label, without leveraging any other

information available to the original model. In our case, this would show that highlighted portions of the text

are relevant for differentiating the speaker.

I add an additional test to measure the “recall” of a rationale extraction strategy; training a model on a dataset

that contains all text except the rationales. To the extent that the accuracy of the model trained on rationales

is higher than the model trained on the text-minus-rationale, we can be sure that the strategy has extracted a

greater proportion of the identifying information. Note that we should not expect the text-minus-rationale

model to have an accuracy of zero with fixed-length rationales; there is no way to know a priori the proportion

of tokens in an advertisement that are indicative of its speaker.
10Jain et al. (2020) also train a model (BERT) to predict rationales, and then use this to generate new rationales. I omit this

approach because of the very low accuracy achieved by the model during training.
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Figure 6 shows accuracy of the classifiers trained

on rationales or text-minus-rationale for each of the

three strategies, and compares them to the accu-

racy of the base model with the full texts. Al-

though all models save the model trained on the

topk rationales have a lower accuracy than the

base model, consider that the models trained on

the rationales only saw a small subset of the full

text. For context, consider the difficulty a trained

human coder would face labelling the rationales

in figure 4. Although defeat Donald Trump is

sufficient to distinguish Trump and Biden, most

coders would be hard-pressed to label the Democratic

primary rationales: out, left behind: This is

your, :This is your and : Donald . grateful

Trump Republicans nation believed. Further-

more, the drop in accuracy for all strategies shows that excluding these high-attribution score tokens

greatly increases the difficulty of correctly classifying the advertisement. As I discuss in this next section, this

result is helpful for showing the utility of attribution-based annotation as a augmentative analysis tool.

Interpreting Annotation

Having shown that IG functions both as a lexical selection strategy and a method for explicating the patterns

identified by transformer-based classifiers, I demonstrate one further utility of this tool for our question.

Annotating documents with token-level attribution scores is a helpful aid for qualitative text analysis strategies

such as content analysis, by incorporating information on corpus-level patterns into individual documents.

Figure 7 contains the same attribution heat maps as figure 4, but compares three advertisements each from

the Sanders and Warren campaigns. The left column shows texts highlighted by attribution score from a
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classifier trained to differentiate Sanders and Warren, while the right column shows the same for the eleven

Democratic Primary candidates.

The highlighting helps the researcher by emphasizing the tokens that are distinctive, and de-emphasizing

the tokens that are not. In the first Sanders advertisement, the phrases super PAC and wealthy are salient

when comparing to all primary candidates, but not when comparing only to Warren. This suggests that

within the eleven Democratic primary candidates, both Sanders and Warren are more likely to use these

terms. In the second Sanders advertisement, several tokens reverse attribution, including Justice. This

suggests that the theme of “Justice” is more associated with another primary candidate than either Sanders

or Warren. Finally, the often referenced phrase I am once again asking for your financial support

is scored higher when comparing to the primary candidates, whereas donation is no longer salient. This

suggests that while donation is a strong predictor of Sanders when compared to Warren, this is no longer the

case when comparing to primary candidates, and the model learns to search for larger identifying spans.

Similar inferences can be made looking at the three Warren advertisements. The first pair tells us that the

words wealthy and chip (in) are characteristic of Warren when comparing to the larger group of eleven

primary candidates, but not when only comparing to Sanders. The second pair shows a stronger focus onto

the phrase grassroots movement, and a flip on the phrase Sign our petition. The third shows that a

similar pattern for the phrase structural change, as characterizing of Warren compared to the other ten

primary candidates.

There are limitations to what we can learn from this strategy. Although we have shown IG attribution is a

faithful way of identifying which information that models use to classify texts, and that this information is

provably differentiating between classes, it does not tell us why a given token or span is salient. For instance,

we see that wealthy is salient for Sanders and Warren when comparing to all Democratic primary candidates,

but not when only comparing to each other. It takes further contextual knowledge and interpretation from

the researcher to then plausibly infer that this is because Sanders and Warren both campaign on platforms of

opposing wealth inequality, whereas other primary candidates do not make it their signature issue.

On the other hand, this method is not meant to eliminate the need for domain-specific knowledge, but rather

to direct the attention of a researcher to which pieces of information are salient in context. As with the other
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Figure 7: Annotated Sanders and Warren advertisements.
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text-as-data tools, that salience must still be linked to the theoretical estimand through argumentation, but

the advantage of this method is that the link between the empirical estimand (salient phrases) and the source

data is more direct.

Conclusion

The application of text-as-data within computational social science is shaped by the methods and tools

available. Where estimators have been based on various simplifying assumptions about language, researchers

accordingly restrict their claims to what the model can justify. When representing a corpus as a matrix of

word counts, the inferences that can be made from models built on this operationalization of text are based

on observations about changes in the patterns of word counts.

Although part of the appeal of DL approaches driving their recent success in NLP is their high predictive

accuracy, an equally important appeal of these tools is their modularity and flexibility. Contextual embedding

models (of which BERT is one example) are a tool that allows us to model tokens within sequences, and make

predictions or inferences between these levels. Although the flexibility of DL tools permits a new approach to

language and a new set of estimators, estimands, and questions, this flexibility also introduces a complexity

that has limited the utility of these tools in domains where explainability is key. This creates demand for

research bridging this explainability gap, and showing applications of DL tools validated in the epistemology

of the respective target domains.

I show that DL-based language models combined with feature attribution methods provide a way to describe

the linguistic differences between political campaigns that can be justified in terms of empirical sufficiency.

Although high predictive accuracy does not tell us what makes two campaigns differ, it does provide sufficient

evidence that they are differentiable. Although the scores provided by IG cannot be provided in terms

of marginal effects, by training new models that are alternately shown high-attribution or low-attribution

regions, we can again infer that the scores do correspond to tokens that are informative to differentiating the

campaigns. We can conduct statistical tests on these scores using uncertainty measures generated with MC

Dropout, and make claims about the statistical significance of token importances.
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Finally, because we are able to fit models with entire documents as a unit of analysis, we can construct

instance-specific estimands for linguistic phenomena occurring only once in our corpus. This ability to

superimpose corpus-level patterns into individual documents brings quantitative and qualitative approaches

to text closer, allowing researchers to ask questions about specific phrases in individual documents. This

approach is not limited to identifying differentiating in text either; as research moves in a multimodal direction,

this work provides the theoretical foundations for applying the same saliency approaches to image classification

models. Future work can also be aimed at constructing annotation tools to augment qualitative text analysis

with the advances transfer learning and DL have brought to NLP.
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